Tetrahedron Letters 50 (2009) 3912–3916

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Selective synthesis of 3-methyleneindolin-2-ones by one-pot multicatalytic processes

Ren-Jie Song, Yu Liu, Rong-Jiang Li, Jin-Heng Li *

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China

article info

Article history: Received 2 March 2009 Revised 11 April 2009 Accepted 17 April 2009 Available online 22 April 2009

Keywords: Copper Palladium Amination C–H functionalization Propiolamide 3-Methyleneindolin-2-one

The 3-methyleneindolin-2-one moieties are frequently present in naturally occurring and biologically active compounds that display great potential utilizations in many major therapeutic areas, such as oncology, inflammation, CNS, immunology, and endocrinology[.1](#page-3-0) Therefore, attention of organic chemists has been increasingly drawn to the development of efficient methods for their preparation. $2-4$ Among the numerous transformations, palladiumcatalyzed cyclization of N-arylpropiolamide involving an arene C–H functionalization process displayed efficiency particularly for the synthesis of 3-methyleneindolin-2-ones.²⁻⁶ However, only few papers have been reported for this purpose.^{[2,3](#page-3-0)} Zhu and coworkers, for example, have first developed the palladium-catalyzed domino carbopalladation/C–H activation/C–C bond-forming reaction that uses an anilide sp^2 C–H bond and an electrophile (aryl iodide) as the coupling partners (Scheme 1).^{[2](#page-3-0)} Subsequently, we have demonstrated some new protocols for constructing the 3-methyleneindolin-2-one skeleton by palladium-catalyzed oxidative C–H functionalization of an anilide sp^2 C–H bond with an nucleophile (based on amide, acid, and $ArI(OAc)_2$).³ Due to continuing interest in this area, 3.4 f we report here a novel one-pot multicatalytic route⁷ for the synthesis of 3-methyleneindolin-2-ones involving sequential copper-catalyzed amination and palladiumcatalyzed C–H functionalization processes (Scheme 1).^{[8,9](#page-4-0)}

The reaction between N-(4-methoxyphenyl)-3-phenylpropiolamide (1a) and 1-iodo-4-methoxybenzene (2a) was investigated to

ABSTRACT

A novel one-pot multicatalytic route for the synthesis of 3-methyleneindolin-2-ones has been developed involving sequential copper-catalyzed amination and palladium-catalyzed C–H functionalization processes. In the presence of CuI and $Pd(OAc)_{2}$, a variety of propiolamides underwent the reaction with iodides to afford the corresponding 3-methyleneindolin-2-ones in moderate yields.

- 2009 Elsevier Ltd. All rights reserved.

optimize the reaction conditions, and the results are summarized in [Table 1.](#page-1-0) Initially, a series of ligands L1–L7 were examined, and the results showed that $L1$, N,N'-dimethylethane-1,2-diamine, was the most efficient (entries 1-7). After treatment of amide 1a with iodide 2a, CuI, and L1 in DMF/MeCN for 12 h, the reaction was conducted in the same vessel for another 12 h after the addition of $Pd(OAc)_2$ to afford the target product 3 in a 57% yield (entry 1). However, the other nitrogen-containing ligands L2–L6 were inferior to L1 (entries 2–6). The reported effective Buchwald-Hartwig amination phosphine L7 was also examined for the one-pot reaction, and only 34% yield of 3 was obtained (entry 7). Among the effects of solvents examined, we found that a mixture of DMF/MeCN (1:1) provided the best results (entries 1 and 8–14).

Scheme 1.

^{*} Corresponding author. Tel.: +86 731 8872 576; fax: +86 731 8872 101. E-mail address: jhli@hunnu.edu.cn (J.-H. Li).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.04.066

Table 1

Screening optimal conditions^a

Reaction conditions: 1a (0.2 mmol), 2a (2.2 equiv), Pd(OAc)₂ (10 mol %), L7 (20 mol %), K₂CO₃ (2.2 equiv), and DMF/MeCN (1:1, 4 mL) at 100 °C for 12 h, then Pd(OAc)₂ $(10 \text{ mol } 2)$ at 100 °C for 12 h .

^a Reaction conditions: **1a** (0.2 mmol), **2a** (2.2 equiv), CuI (10 mol %), ligand (20 mol %), K₂CO₃ (2.2 equiv), and solvent (4 mL) at 100 °C for 12 h, then [Pd] (10 mol %) at 100 ℃ for 12 h. Some side products were observed from decomposition of the C–N bonds by GC–MS analysis.

Both CuI (10 mol %) and Pd(OAc)₂ (10 mol %) were added at the same time for 24 h.
Reaction conditions: **1a** (0.2 mmol), **2a** (2.2 equiv), Pd(OAc)₂ (10 mol %), **L7** (20 mol %), K₂CO₃ (2.2 equiv), and DMF/MeCN (1:1, (10 mol %) at 100 \degree C for 12 h.

Finally, a variety of other Pd catalysts, including $Pd(CF_3CO_2)_2$, PdBr₂, PdCl₂(PPh₃)₂, Pd₂(dba)₃, and K₂PdCl₄, were evaluated (entries 15–19). The screening results demonstrated that the efficiency of Pd₂(dba)₃ or K₂PdCl₄ is the same as that of Pd(OAc)₂, but Pd(CF_3CO_2)₂, PdBr₂, and PdCl₂(PPh₃)₂ were less effective. It is noteworthy that both CuI and $Pd(OAc)_2$ were added to the mixture of amide 1a and iodide 2a at the same time for 24 h providing the product 3 in a low yield (entry 20). The results demonstrated that only a low yield was obtained without Cu catalysts by a Pd-catalyzed amination/C–H functionalization process (entry 21). $9,8e$

With the optimal conditions in hand, the scopes of both propi-olamides 1 and iodides 2 were examined [\(Table 2](#page-2-0)).¹⁰ We were pleased to find that the reactions of amide 1a with various iodides 2b, 2c, and 2e were still conducted smoothly in moderate yields (entries 1, 2, and 4), but the reaction of the electron-deficient aryliodide 2d gave a mixture of products (entry 3). Treatment of substrate **1a** with iodobenzene (2b), CuI, L1, and Pd(OAc)₂, for instance, selectively afforded two products 4 and 5 in 62% total yield (entry 1). The electron-rich aryliodide 2c was also suitable for the one-pot reaction under the standard conditions (entry 2). Interestingly, iodomethane (2e) could undergo the reaction with amide 1a to afford the corresponding 3-methyleneindolin-2-one 8 in 47% yield (entry 4). Subsequently, we chose both propiolamides 1 and iodides 2 to control the selectivity (entries 5–9). 3-Phenyl-N-p-tolylpropiolamide $(1d)$, for instance, was reacted with 1-iodo-4-methylbenzene (2c) to give the product 11 alone in 53% yield (entry 7). It is noteworthy that 21% yield can still be achieved from the reaction between the two bulk substrates, 3phenyl-N-o-tolylpropiolamide (1f) and 1-iodo-2-methylbenzene (2g) (entry 9). N-Alkyl phenylpropiolamides 1g and 1h were also investigated under the standard conditions (entries 10 and 11). The results demonstrated that both amides 1g and 1h could undergo the one-pot reaction selectively in 36% and 33% yields, respectively.

As shown in [Scheme 2](#page-3-0), a controlled reaction was conducted. Treatment of N-(4-methoxyphenyl)-3-phenylpropiolamide (1a) with 1-iodo-4-methoxybenzene (2a), CuI, and L1 afforded the corresponding amination product 16 in 50% isolated yield. Subsequently, the reaction of 16 was carried out under the Zhu's conditions to give the target product 3 in 48% yield.

A possible mechanism was proposed as outlined in [Scheme 3](#page-3-0) on the basis of the previously reported mechanisms and the present results.^{[2,3,8,9](#page-3-0)} Reaction of amide 1 with CuIL₂ affords intermediate A with the aid of base. Intermediate A undergoes the reaction with iodide 2 to yield the product B and to regenerate the active Cu species. 8 Subsequently, C–H functionalization of the product **B** occurs after the addition of Pd catalyst to give the target 3-methylenein-dolin-[2](#page-3-0)-ones by Zhu's process.² We deduced that Pd-catalyzed amination of substrate 1 with iodide 2 may take place to give the product **B** in the multicatalytic processes (entry 21 in Table 1).^{[9,8e](#page-4-0)} Based on the present results, the stereoselectivity may mainly depend on the characters of both aryl group on the propiolamide moiety and substituent $R¹$ of iodides, such as electronic effect and steric effect. Study of the true mechanism is in progress.

In summary, we have developed a novel one-pot protocol for the synthesis of 3-methyleneindolin-2-ones by sequential copper-catalyzed amination and palladium-catalyzed C–H functional-

Table 2

Selective synthesis of 3-methyleneindolin-2-ones by one-pot multic[a](#page-1-0)talytic processes^a

Table 2 (continued)

Reaction conditions: 1 (0.2 mmol), 2 (2.2 equiv), CuI (10 mol %), L1 (20 mol %), and K₂CO₃ (2.2 equiv) in DMF/MeCN (1:1, 4 mL) at 100 °C for 12 h, then Pd(OAc)₂ (10 mol %) at 100 C for 12 h. Some side products were observed from decomposition of the C–N bonds by GC–MS analysis.

 $^{\rm b}$ Ratios of Z/E isomers were determined by ¹H NMR.

Scheme 2. A controlled reaction.

Scheme 3. A possible mechanism.

ization reactions. In the presence of CuI and $Pd(OAc)₂$, a variety of propiolamides underwent the multicatalytic processes with iodides to afford the corresponding 3-methyleneindolin-2-ones in moderate yields. Efforts to extend the application of the transformation in organic synthesis are underway in our laboratory.

Acknowledgments

The authors thank the New Century Excellent Talents in University (No. NCET-06-0711), Scientific Research Fund of Hunan Provincial Education Department (No. 08A037), and National Natural Science Foundation of China (No. 20572020) for financial support.

Supplementary data

Supplementary data associated with this Letter can be found, in the online version, at doi:10.1016/j.tetlet.2009.04.066.

References and notes

- 1. (a) Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B. K.; Hubbard, S. R.; Schlessinger, J. Science 1997, 276, 955; (b) Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L. K.; McMahon, G.; Tang, C. J. Med. Chem. 1999, 42, 5120; (c) Hare, B. J.; Walters, W. P.; Caron, P. R.; Bemis, G. W. J. Med. Chem. 2004, 47, 4731; (d) Noble, M. E. M.; Endicott, J. A.; Johnson, L. N. Science 2004, 304, 1800; (e) Liao, J. J.-L. J. Med. Chem. 2007, 50, 409; (f). Drugs Future 1990, 15, 898; (g) Robinson, R. P.; Reiter, L. A.; Barth, W. E.; Campeta, A. M.; Cooper, K.; Cronin, B. J.; Destito, R.; Donahue, K. M.; Falkner, F. C.; Fiese, E. F.; Johnson, D. L.; Kuperman, A. V.; Liston, T. E.; Malloy, D.; Martin, J. J.; Mitchell, D. Y.; Rusek, F. W.; Shamblin, S. L.; Wright, C. F. J. Med. Chem. 1996, 39, 10; (h) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Kunkel, M. W. J. Med. Chem. 2006, 49, 6922; (i) Graczyk, P. P. J. Med. Chem. 2007, 50, 5773.
- 2. (a) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett. 2006, 8, 4927; (b) Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3291; (c) Pinto, A.; Neuville, L.; Zhu, J. Tetrahedron Lett. 2009, 8, 9–89. doi:10.1016/ j.tetlet.2009.03.086.
- 3. (a) Tang, S.; Peng, P.; Pi, S.-F.; Liang, Y.; Wang, N.-X.; Li, J.-H. Org. Lett. 2008, 10, 1179; (b) Tang, S.; Peng, P.; Wang, Z.-Q.; Tang, B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X. Org. Lett. 2008, 10, 1875; (c) Tang, S.; Peng, P.; Zhong, P.; Li, J.-H. J. Org. Chem. 2008, 73, 5476.
- 4. For other papers on the synthesis of oxindoles using Pd catalysts, see: (a) Cheung, W. S.; Patch, R. J.; Player, M. R. J. Org. Chem. 2005, 70, 3741; (b) Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.; Takemoto, Y. J. Org. Chem. 2005, 70, 6972; (c) Couty, S.; Liégault, B.; Meyer, C.; Cossy, J. Org. Lett. 2004, 6, 2511; (d) D'Souza, D. M.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 153; (e) Yanada, R.; Obika, S.; Oyama, M.; Takemoto, Y. Org. Lett. 2004, 6, 2825; (f) Tang, S.; Yu, Q.-F.; Peng, P.; Li, J.-H.; Zhong, P.; Tang, R.-Y. Org. Lett. 2007, 9, 3413.
- 5. For papers on the synthesis of oxindoles using Rh as the catalysts and 2 alkynylaryl isocyanates as the substrates, see: (a) Shintani, R.; Yamagami, T.; Hayashi, T. Org. Lett. 2006, 8, 4799; (b) Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2007, 8, 5075; (c) Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2008, 10, 1743.
- 6. For papers on the other methods for the synthesis of oxindoles, see: (a) Mori, M.; Ban, Y. Tetrahedron Lett. 1979, 20, 1133; (b) Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J.-Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.; Tang, C. J. *Med. Chem.* **2003**, 46
1116; (c) Wang, L.; Zhang, Y.; Hu, H.-Y.; Fun, H. K.; Xu, J.-H. J. Org. Chem. **2005**. 70, 3805; (d) Kalinski, C.; Umkehrer, M.; Schmidt, J.; Ross, G.; Kolb, J.; Burdack, C.; Hiller, W.; Hoffmann, S. D. Tetrahedron Lett. 2006, 47, 4683; (e) Xing, X.; Wu, J.; Luo, J.; Dai, W.-M. Synlett 2006, 2099; (f) Yang, T.-M.; Liu, G. J. Comb. Chem. 2007, 9, 86.
- 7. For selected reviews on the transition metal-catalyzed multicatalytic processes, see: (a) Dragutan, V.; Dragutan, I. J. Organomet. Chem. 2006, 691, 5129; (b) Schmidt, B. Pure Appl. Chem. 2006, 78, 469; (c) De Meijere, A.; Von Zezschwitz, P.; Brase, S. Acc. Chem. Res. 2005, 38, 413; (d) Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001; (e) Ajamian, A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004, 43, 3754; (f) Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004, 248, 2365; (g) Prestat, G.; Poli, G. Chemtracts 2004, 17, 97; (h) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302; (i) Wang, C.; Xi, Z. Chem. Soc. Rev. 2007, 36, 1395.
- 8. For selected papers on Cu-catalyzed amination of amides with aryl halides, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727; (b) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (c) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667; (d) Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 3529; (e) Cuny, G. J.; Bois-Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2004, 126, 14475; (f) Yuen, J.; Fang, Y.; Lautens, M. Org. Lett. 2006, 8, 653; (g) Joues, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2007, 72, 7968; (h) Zhang, N.; Buchwald, S. L. Org. Lett. 2007, 9, 4749; (i) Martin, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521; (j) Mino, T.; Harada, Y.; Shindo, H.; Sakamoto, M.; Fujita, T. Synlett 2008, 4, 614; (k) Woler, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2009, 11, 947; (l) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450; (m) Deng, W.; Wang, Y.-F.; Zou, Y.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2004, 45, 2311; (n) Yang, T.; Lin, C.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2005, 7, 4781; (o) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809– 1812; (p) Shen, R.; Porco, J. A. Org. Lett. 2000, 2, 1333.
- 9. For selected papers on Pd-catalyzed amination of amides with aryl halides, see: (a) Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35; (b) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (c) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043; (d) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653; (e) Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433; (f) Willis, M. C.; Brace, G. M.; Holmes, L. P. Synthesis 2005, 3229; (g) Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Org. Chem.

2006, 71, 375; (h) Lkawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001; (i) Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. Org. Lett. 2009, 11, 947.

Typical procedure: A mixture of propiolamide 1 (0.2 mmol), iodide 2 (2.2 equiv), CuI (10 mol %), N,N'-dimethylethane-1,2-diamine L1 (20 mol %), and K_2CO_3 (2.2 equiv) was stirred in DMF/MeCN (v/v 1:1, 4 mL) at 100 °C for 12 h, then Pd(OAc)₂ (10 mol %) was added to the mixture, and stirred at 100 °C for another 12 h until complete consumption of starting material which was monitored by TLC. After the reaction was complete, the mixture was washed with saturated NaCl, and was extracted with diethyl ether. The organic layers were dried with $Na₂SO₄$ and were evaporated under vacuum, the residue was purified by flash column chromatography (hexane/ethyl acetate) to afford the pure product.

(E)-5-Methoxy-1-(4-methoxyphenyl)-3-((4-methoxyphenyl)(phenyl) methylene) indolin-2-one (3): Red oil; ¹H NMR (500 MHz) δ : 7.36-7.30 (m, 9H), 6.97 (d $J = 4.5$ Hz, 1H), 7.28 (t, $J = 4.5$ Hz, 3H), 7.27–7.18 (m, 4H), 7.17–7.15 (m, 1H), 7.02 (t, J = 6.5 Hz, 1H), 6.99 (t, J = 6.5 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 4.90 (s, 2H), 2.37
(s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz) δ : 166.5, 160.8, 158.7, 155.7, 154.9, 140.2, 137.5, 133.5, 131.6, 130.5, 129.2, 128.1, 127.8, 127.7, 124.4, 123.6, 114.6, 114.3, 114.1, 109.3, 109.2, 55.5 (2C), 55.4; IR (KBr, cm⁻¹): 1699, 1508, 1247; LRMS (EI, 70 eV) m/z (%): 464 (33), 463 (M+ , 100), 448 (13) , 420 (2), 386 (3), 340 (1), 232 (19), 195 (2); HRMS (EI) for $C_{30}H_{25}NO_4$ (M⁺): calcd 463.1784, found 463.1783. 5-Methoxy-3-((4-methoxyphenyl)(phenyl)methylene)-1-methylindolin-2-one (15):

 ${}^{2}E/Z$ ${}^{2}E/Z$ ${}^{2}E/Z$ = 3:1; Yellow oil, ¹H NMR (500 MHz) δ : 7.49 (s, 1H), 7.42–7.28 (m, 6H), 7.10 (d, J = 7.0 Hz, 2.3H), 7.06 (d, J = 7.0 Hz, 0.7H), 6.97-6.87 (m, 1H), 6.75-6.64 (m, 1H), 3.86 (s, 3H), 3.83 (s, 1H), 3.54 (s, 3H), 3.44 (s, 1H), 3.20 (s, 1H), 3.17 (s, 3H) ; ¹³C NMR (125 MHz) δ 166.9, 160.7, 154.9, 154.7, 140.3, 137.2, 137.0, 133.3, 132.5, 131.6, 130.3, 129.7, 129.2, 129.1, 128.9, 127.7, 124.4, 123.9, 114.1, 114.0, 113.8, 113.0, 109.5, 109.2, 107.8; IR (KBr, cm-1): 1684, 1507, 1490; LRMS (EI, 70 eV) m/z (%): 372 (21), 371 (M⁺, 100), 356 (18), 341 (4), 328 (3), 294 (5), 264 (3), 178 (8).